Distributional Study of De Finetti’s Dividend Problem for a General Lévy Insurance Risk Process

نویسندگان

  • A. E. KYPRIANOU
  • Z. PALMOWSKI
چکیده

We provide a distributional study of the solution to the classical control problem due to De Finetti (1957), Azcue and Muller (2005) and Avram et al. (2006) which concerns the optimal payment of dividends from an insurance risk process prior to ruin. Specifically we build on recent work in the actuarial literature concerning calculations for the n-th moment of the net present value of dividends paid out in the optimal strategy as well as the moments of the deficit at ruin and the Laplace transform of the red period. The calculations we present go much further than existing literature in that our calculations are valid for a general spectrally negative Lévy process as opposed to the classical Cramér-Lundberg process with exponentially distributed jumps. Moreover, the technique we use appeals principally to excursion theory rather than integro-differential equations and for the case of the n-th moment of the net present value of dividends, makes a new link with the distribution of integrated exponential subordinators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Optimality of the Barrier Strategy in De Finetti’s Dividend Problem for Spectrally Negative Lévy Processes

We consider the classical optimal dividend control problem which was proposed by de Finetti [Trans. XVth Internat. Congress Actuaries 2 (1957) 433–443]. Recently Avram, Palmowski and Pistorius [Ann. Appl. Probab. 17 (2007) 156–180] studied the case when the risk process is modeled by a general spectrally negative Lévy process. We draw upon their results and give sufficient conditions under whic...

متن کامل

Stochastic control for spectrally negative Lévy processes

Three optimal dividend models are considered for which the underlying risk process is a spectrally negative Lévy process. The first one concerns the classical dividends problem of de Finetti for which we give sufficient conditions under which the optimal strategy is of barrier type. As a consequence, we are able to extend considerably the class of processes for which the barrier strategy proves...

متن کامل

De Finetti’s Optimal Dividends Problem with an Affine Penalty Function at Ruin

In a Lévy insurance risk model, under the assumption that the tail of the Lévy measure is log-convex, we show that either a horizontal barrier strategy or the take-the-money-and-run strategy maximizes, among all admissible strategies, the dividend payments subject to an affine penalty function at ruin. As a key step for the proof, we prove that, under the aforementioned condition on the jump me...

متن کامل

De Finetti’s dividend problem and impulse control for a two-dimensional insurance risk process

Consider two insurance companies (or two branches of the same company) that have the same claims and they divide premia in some specified proportions. We model the occurrence of claims according to a Poisson process. The ruin is achieved if the corresponding two-dimensional risk process first leave the positive quadrant. We consider different kinds of linear barriers. We will consider two scena...

متن کامل

On the optimal dividend problem for a spectrally negative Lévy process

In this paper we consider the optimal dividend problem for an insurance company whose risk process evolves as a spectrally negative Lévy process in the absence of dividend payments. The classical dividend problem for an insurance company consists in finding a dividend payment policy that maximizes the total expected discounted dividends. Related is the problem where we impose the restriction th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006